Kamis, 15 Desember 2011

Energi Metabolisme

ENERGI METABOLISME

A.    Pengertian Metabolisme
Metabolisme berasal dari kata metabole (yunani) yg artinya berubah.
Metabolisme:keseluruhan reaksi yang terjadi di dalam sel, meliputi proses penguraian & sintesis molekul kimia yang menghasilkan & membutuhkan panas (enegi) serta dikatalisis oleh enzim

Metabolisme disebut juga reaksi enzimatis, karena metabolisme terjadi selalu menggunakan katalisator enzim.

Metabolisme meliputi:
1)      jalur sintesis (anabolisme/endorgenik)
 Þ menggabungkan molekul-molekul kecil menjadi makromolekul yang lebih kompleks; memerlukaan energi yang disuplai dari hidrolisis ATP
2)      jalur degradatif (katabolisme/eksorgenik)
 Þ memecah molekul kompleks menjadi molekul yang lebih sederhana; melepaskan energi yang  dibutuhkan untuk mensintesis ATP.

Tujuan :
Metabolisme bertujuan u8ntuk mengahsilkan energi, yg berguna bagti aktivitas kehidupan, baik tingkat seluler (pembelahan sel, transpor molekul ke luar dan ke dalam sel) maupun tingkat individu (membaca, menulis, berjalan, berlari, dsb)





B.     Energi

Energi yang terbanyak kita pakai ialah energi matahari, terutama yang ditangkap oleh tumbuhan hijau. Penangkapan energi matahari itu terjadi dalam proses fotosintesis.
Dalam proses ini energi matahari diubah menjadi energi kimia yang tersimpan dalam molekul gula glukose. Molekul gula itu terbentuk dalam proses fotosintesis dari air dan gas CO2 yang terdapat dalam udara. Gula selanjutnya diubah menjadi karbohidrat yang tersimpan dalam tubuh dan digunakan sebagai bahan untuk membentuk tubuh tumbuhan, misalnya akar, batang dan daun.
Energi yang terkandung dalam tubuh tumbuhan itu menjadi sumber energi makhluk hidup lain. Kalau kita makan nasi, misalnya, sebenarnya kita mendapatkan energi dari matahari. Juga kalau kita membakar kayu untuk memasak, sebenarnya kita menggunakan energi matahari.
Makanan yang kita makan mengalami ‘pembakaran’ dalam tubuh kita. Pembakaran ini tidak menggunakan api, melainkan melalui reaksi imia tertentu dalam tubuh yang merupakan bagian metabolisme. Dalam metabolisme itu energi dalam makanan diubah menjadi bentuk yang dapat digunakan untuk melakukan kerja, seperti gerak otot. Karena metabolisme itu terjadi di dalam tubuh kita, metabolisme ini disebut metabolisme intern.
Energi yang kita perlukan dapat dibagi dalam dua golongan besar. Pertama, energi yang dipakai untuk dan di dalam tubuh kita sendiri. Energi ini terdapat di dalam makanan yang kita makan sehari-hari. Makanan tersebut kita ‘bakar di dalam tubuh dalam proses yang disebut metabolisme. Pembakaran itu tidak terjadi dengan api, melainkan melalui proses kimia yang kompleks. Dalam pembakaran itu terbentuk molekul ATP. Energi kimia dalam mulekul ATP inilah yang dapat dipakai untuk melakukan kerja, misalnya mengunyah makanan dan mengangkat barang. Karena pembakaran itu terjadi di dalam tubuh, pembakaran itu disebut metabolisme intern.
Untuk dapat menghasilkan energi, proses metabolisme glukosa akan berlangsung melalui 2 mekanisme utama yaitu melalui proses anaerobik dan proses aerobik. Proses metabolisme secara anaerobikakan berlangsung di dalam sitoplasma (cytoplasm) sedangkan proses metabolisme anaerobik akan berjalan dengan mengunakan enzim ysebagai katalis di dalam mitochondria dengan kehadiran Oksigen (O ).


Secara keseluruhan proses metabolisme Glukosa akan menghasilkan produk samping berupa karbondioksida (CO ) dan air (H O). Karbon dioksida dihasilkan dari siklus Asam Sitrat sedangkan air (H O) dihasilkan dari proses rantai transport elektron. Melalui proses metabolisme, energi kemudian akan dihasilkan dalam bentuk ATP dan kalor panas. Terbentuknya ATP dan kalor panas inilah yang merupakan inti dari proses metabolisme energi. Melalui proses Glikolisis, Siklus Asam Sitrat dan proses Rantai Transpor Elektron, sel-sel yang tedapat di dalam tubuh akan mampu untuk mengunakan dan menyimpan energi yang dikandung dalam bahan makanan sebagai energi ATP. Secara umum proses metabolisme secara aerobik akan mampu untuk menghasilkan energi yang lebih besar dibandingkan dengan proses secara anaerobik. Dalam proses metabolisme secara aerobik, ATP akan terbentuk sebanyak 36 buah sedangkan proses anaerobik hanya akan menghasilkan 2 buah ATP. Ikatan yang terdapat dalam molekul ATP ini akan mampu untuk menghasilkan energi sebesar 7.3 kilokalor per molnya.

C.     Faktor Penentu Terhadap Kecepatan Reaksi Biokimia



Salah satu contoh reaksi biokimia adalah fotosintesis.
Proses fotosintesis dipengaruhi beberapa faktor yaitu faktor yang dapat memengaruhi secara langsung seperti kondisi lingkungan maupun faktor yang tidak memengaruhi secara langsung seperti terganggunya beberapa fungsi organ yang penting bagi proses fotosintesis.[1] Proses fotosintesis sebenarnya peka terhadap beberapa kondisi lingkungan meliputi kehadiran cahaya matahari, suhu lingkungan, konsentrasi karbondioksida (CO2).[1] Faktor lingkungan tersebut dikenal juga sebagai faktor pembatas dan berpengaruh secara langsung bagi laju fotosintesis.
Faktor pembatas tersebut dapat mencegah laju fotosintesis mencapai kondisi optimum meskipun kondisi lain untuk fotosintesis telah ditingkatkan, inilah sebabnya faktor-faktor pembatas tersebut sangat memengaruhi laju fotosintesis yaitu dengan mengendalikan laju optimum fotosintesis.[28] Selain itu, faktor-faktor seperti translokasi karbohidrat, umur daun, serta ketersediaan nutrisi memengaruhi fungsi organ yang penting pada fotosintesis sehingga secara tidak langsung ikut memengaruhi laju fotosintesis.
Berikut adalah beberapa faktor utama yang menentukan laju fotosintesis :
  1. Intensitas cahaya
    Laju fotosintesis
    maksimum ketika banyak cahaya.
  2. Konsentrasi karbon dioksida
    Semakin banyak karbon dioksida di
    udara, makin banyak jumlah bahan yang dapt digunakan tumbuhan untuk melangsungkan fotosintesis.
  3. Suhu
    Enzim-enzim yang bekerja dalam proses fotosintesis hanya dapat bekerja pada suhu optimalnya. Umumnya laju fotosintensis meningkat seiring dengan meningkatnya suhu hingga batas toleransi enzim.
  4. Kadar air
    Kekurangan air atau kekeringan menyebabkan
    stomata menutup, menghambat penyerapan karbon dioksida sehingga mengurangi laju fotosintesis.
  5. Kadar fotosintat (hasil fotosintesis)
    Jika kadar fotosintat seperti karbohidrat berkurang, laju fotosintesis akan naik. Bila kadar fotosintat bertambah atau bahkan sampai
    jenuh, laju fotosintesis akan berkurang.
  6. Tahap pertumbuhan
  7. Penelitian menunjukkan bahwa laju fotosintesis jauh lebih tinggi pada tumbuhan yang sedang berkecambah ketimbang tumbuhan dewasa. Hal ini mungkin dikarenakan tumbuhan berkecambah memerlukan lebih banyak energi dan makanan untuk tumbuh.
Contoh lain adalah enzim.
Enzim merupakan katalisator protein yang mengatur kecepatan berlangsungnya berbagai proses fisiologis. Sebagai katalisator, enzim ikut serta dalam reaksi dan kembali ke keadaan semula bila reeaksi telah selesai.
Perubahan suhu dan pH mempunyai pengaruh besar terhadap kerja enzim. Kecepatan reaksi enzim juga dipengaruhi oleh konsentrasi enzim dan konsentrasi substrat. Pengruh aktivator, inhibitor, koenzim dan konsentrasi elektrolit dalam beberapa keadaan juga merupakan faktor-faktor yang penting. Hasil rekasi enzim juga dapat menghambat kecepatan reaksi.
1. PENGARUH SUHU.
Suhu rendah yang memdekati titik beku biasanya tidak merusak enzim. Pada suhu dimana enzim masih aktif, kenaikan suhu sebanyak 10OC, menyebabkan keaktifan menjadi 2 kali lebih besar (Q10 = 2). Pada suhu optimum reaksi berlangsung paling cepat. Bila suhu dinaikan terus, maka jumlah enzim yang aktif akan berkurang karena mengalami denaturasi. Enzim didalam tubuh manusia memiliki suhu optimum sekitar 37oC. Enzim organismemikro yang hidup dalam lingkungan dengan suhu tinggi mempunyai suhu optimum yang tinggi.
Sebagian besar enzim menjadi tidak aktif pada pemanasan sampai + 60oC. Ini disebabkan karena proses denaturasi enzim. Dalam beberapa keadaan, jika pemanaasan dihentikan dan enzim didinginkan kembali aktivitasnya akan pulih. Hal ini disebabkan oleh karena proses denaturasi masih reversible. pH dan zat-zat pelindung dapat mempengaruhi denaturasi pada pemanasan ini.
2. PENGARUH pH
Bila aktivitas enzim diukur pada pH yang berlainan, maka sebagian besar enzim didalam tubuh akan menunjukan aktivitas optimum antara pH 5,0 - 9,0, kecuali beberapa enzim misalnya pepsin(pH optimum = 2). Ini disesbabkan oleh :
1. Pada pH rendah atau tingi, enzim akan mengalami denaturasi.
2. Pada pH rendah atau tinggi, enzim maupun substrat dapat mengalami perubahan muatan listrik dengan akibat perubahan aktivitas enzim.
Misalnya suatu reaksi enzim dapat berjalan bila enzim tadi bermuatan negatif (Enz-) dan substratnya bermuatan positif (SH+) :
Enz- + SH+ EnzSH
Pada pH rendah Enz- akan bereaksi dengan H+ menjadi enzim yang tidak bermuatan.
Enz- + H+ Enz-H
Demikian pula pada pH tinggi, SH+ yang dapat bereaksi dengan Enz-, maka pada pH yang extrem rendah atau tiggikonsentrasi efektif SH+ dan enz akan berkurang, karena itu kecepatan reaksinya juga berkurang. Seperti pada gambar berikut.
3. PENGARUH KONSENTRASI ENZIM
Kecepatan rekasi enzim (v) berbanding lurus dengan konsentrasi enzim (Enz). Makin besar jumlah enzim makin cepat reaksinya. Lihat pada gambar.
Dalam reaksinya Enz akan mengadakan ikatan dengan substrat S dan membentuk kompleks enzim-substrat, Enzs. EnzS ini akan dipecah menjadi hasil reaksi P dan enzim bebas Enz.
Enz + S EnzS Enz + P
Enz + S Enz + P
Makin banyak Enz terbentuk, makin cepat reaksi ini berlangsung. Ini terjadi sampai batas tertentu.
4. PENGARUH KONSENTRASI SUBSTRT
Bila konsentrasi substrat (S) bertambah, sedangkan keadaan lainya tetap sama, kecepatan reaksi juga akan meningkat sampai suatu batas maksimum V. Pada titik maksimum ini enzim telah jenuh dengan subtrat. Seperti pada gambar.
Pada titik-titik A dan B belum semua enzim bereaksi dengan subtrat, maka pada A dan B penambahan subtrat S akan menyebabkan jumlah EnzS bertambah dan kecepatan reaksi v akan bertambah, sesuai dengan penambahan S.
Pada titik C semua enzim telah bereaksi denagn subtrat, sehingga penambahan S tidak akan menambah kecepatan reaksi, karena tidak ada lagi enzim bebas.
Pada titik B kecepatan reaksi tepat setengah kecepatan maksimum. Konsentrasi subtrat yang menghasilkan setengah kecepatan maksimum dinamakan harga Km atau konstanta Michaelis.
5. PENGARUH FAKTOR-FAKTOR LAIN
Enzim dapat dirusak dengan pengocokan, penyinaran ultraviolet dan sinar-x, sinar-β dan sinar-γ. Untuk sebagian ini disebabkan karena oxidasi oleh peroxida yang dibentuk pada penyinaran tersebut. Kerja enzim juga dipengaruhi oleh adanya inhibitor seperti obata-obatan dan sebagainya


D.    ATP dan Transfer Energi

Adenosin-5′-trifosfat (ATP) adalah multifungsi nukleotida yang memainkan peran penting dalam biologi sel sebagai koenzim, yaitu “molekul unit mata uang” intraselular energi transfer. Ini adalah sumber energi yang dihasilkan selama fotosintesis dan respirasi sel dan dikonsumsi oleh banyak enzim dan berbagai proses selular, termasuk reaksi biosintetik, motilitas, dan pembelahan sel. ATP terdiri dari adenosin difosfat (ADP) atau adenosin monofosfat (AMP ) dan penggunaannya dalam metabolisme mengubahnya kembali ke prekursor ini in ATP each day.  Oleh karena itu ATP didaur ulang terus-menerus dalam organisme, dengan membalik tubuh manusia beratnya sendiri dalam ATP setiap hari.
 ATP digunakan sebagai substrat dalam transduksi sinyal jalur oleh kinase yang memfosforilasi protein dan lipid, maupun oleh adenilat siklase, yang menggunakan ATP untuk menghasilkan pembawa pesan kedua molekul siklik AMP.. Rasio antara ATP dan AMP digunakan sebagai cara untuk sel merasakan betapa besar energi yang tersedia dan mengontrol jalur-jalur metabolisme yang menghasilkan dan mengkonsumsi ATP. Terlepas dari peran dalam metabolisme energi dan sinyal, ATP juga dimasukkan ke dalam asam nukleat oleh polimerase dalam proses replikasi DNA dan transkripsi.
Struktur molekul ini terdiri dari purin basa (adenin) terikat pada 1 ‘karbon atom dari sebuah. Ini adalah penambahan dan penghapusan gugus fosfat ini yang mengkonversi antar ATP, ADP dan AMP. . Ketika ATP digunakan dalam sintesis DNA, maka gula ribosa pertama dikonversi menjadi deoksiribosa oleh ribonukleotida reduktase.
. ATP ini ditemukan pada tahun 1929 oleh Karl Lohmann, namun struktur yang benar tidak ditentukan sampai beberapa tahun kemudian. Saat itu diusulkan untuk menjadi energi utama. Ini buatan pertama kali disintesis oleh Alexander Todd pada tahun 1948.
Sifat fisik dan kimia
ATP terdiri dari adenosin – terdiri dari adenin cincin dan ribosa gula – dan tiga fosfat kelompok (trifosfat).. Kelompok yang phosphoryl, dimulai dengan kelompok paling dekat dengan ribosa, yang disebut sebagai alpha (α), beta (β), dan gamma (γ) fosfat. ATP sangat larut dalam air dan sangat stabil dalam larutan pH antara 6,8-7,4, tetapi cepat dihidrolisis pada pH yang ekstrim. Akibatnya, ATP paling baik disimpan sebagai garam anhidrat. [8]
ATP adalah molekul yang tidak stabil di unbuffered air, yang hydrolyses untuk ADP dan fosfat.. Hal ini karena kekuatan ikatan antara residu fosfat dalam ATP kurang dari kekuatan dari “hidrasi” ikatan antara produk-produknya (ADP + fosfat), dan air.. Jadi, jika ATP dan ADP berada dalam kesetimbangan kimia dalam air, hampir semua ATP pada akhirnya akan dikonversi ke ADP. . Sebuah sistem yang jauh dari kesetimbangan mengandung energi bebas Gibbs, dan mampu melakukan pekerjaan.. Sel hidup menjaga rasio ATP menjadi ADP pada suatu titik sepuluh lipat dari kesetimbangan, dengan konsentrasi ATP ribuan kali lipat lebih tinggi daripada konsentrasi ADP. Perpindahan dari kesetimbangan berarti bahwa hidrolisis ATP dalam sel melepaskan energi dalam jumlah besar.
 Isi energi molekul yang terisolasi ATP adalah suatu konsekuensi dari anhidrida berdekatan obligasi yang menghubungkan fosfat. [Rujukan?] Anhidrida menunjukkan peningkatan reaktifitas dibandingkan dengan asam yang sesuai. Hal ini karena obligasi yang merupakan separoh anhidrida kurang stabil (sehingga dalam energi yang lebih tinggi) dibandingkan dengan obligasi yang dapat dibentuk dari substitusi nukleofilik. [Rujukan?] Dalam kasus ATP, obligasi terbentuk dari hidrolisis, atau fosforilasi residu oleh ATP, energi lebih rendah daripada obligasi Setelah ditengahi enzim hidrolisis ATP atau fosforilasi oleh ATP, energi ini bisa dimanfaatkan oleh sistem hidup untuk melakukan kerja.
Setiap sistem tidak stabil berpotensi reaktif molekul dapat berpotensi digunakan sebagai cara untuk menyimpan energi bebas, jika sel mempertahankan konsentrasi mereka jauh dari titik ekuilibrium reaksi. [9] Namun, sebagaimana halnya dengan polimer biomolekul, hancurnya RNA, DNA, dan ATP ke monomer sederhana didorong oleh energi-release dan meningkatkan entropi-pertimbangan, dalam kedua standar konsentrasi, dan juga mereka konsentrasi ditemui di dalam sel.
Standar jumlah energi yang dilepaskan dari hidrolisis ATP dapat dihitung dari perubahan energi di bawah non-alami (standar) kondisi, kemudian memperbaiki konsentrasi biologis. Perubahan total energi panas (entalpi) pada suhu dan tekanan standar dari dekomposisi terhidrasi ATP menjadi ADP dan fosfat anorganik terhidrasi adalah -20,5 kJ / mol, dengan perubahan energi bebas 3,4 kJ / mol. Energi dirilis oleh berlayar padanya baik fosfat (P i) atau pirofosfat (PP i) unit dari ATP pada keadaan standar dari 1 M adalah: Biosintesis.
ATP konsentrasi di dalam sel biasanya 1-10 mM. ATP dapat diproduksi oleh redoks reaksi sederhana dan kompleks menggunakan gula (karbohidrat) atau lipid sebagai sumber energi. Untuk ATP dapat disintesis dari kompleks bahan bakar, pertama-tama mereka harus dipecah menjadi komponen dasar mereka . Karbohidrat adalah dihidrolisis menjadi gula sederhana, seperti glukosa dan fruktosa.. Lemak (trigliserida) adalah metabolised untuk memberikan asam lemak dan gliserol.
. Proses keseluruhan dari oksidasi glukosa untuk karbon dioksida yang dikenal sebagai respirasi sel dan dapat menghasilkan sekitar 30 molekul ATP dari satu molekul glukosa. [19] ATP dapat dihasilkan oleh sejumlah proses seluler yang berbeda; tiga jalur utama yang digunakan untuk menghasilkan energi dalam eukariotik organisme glikolisis dan siklus asam sitrat / oksidatif fosforilasi, baik komponen respirasi sel, dan beta-oksidasi. Mayoritas produksi ATP ini oleh non-fotosintetik aerobik eukariota berlangsung di mitokondria, yang dapat membuat hampir 25% dari total volume sel biasa.
Glikolisis:
Dalam glikolisis, glukosa dan gliserol yang dimetabolisme untuk piruvat melalui jalur glikolitik. . Dalam kebanyakan organisme, proses ini terjadi di dalam sitosol, tetapi dalam beberapa protozoa seperti kinetoplastids, ini dilaksanakan secara khusus organel yang disebut glycosome. Glikolisis bersih menghasilkan dua molekul ATP melalui fosforilasi substrat dikatalisis oleh dua enzim : Dua molekul NADH juga diproduksi, yang dapat dioksidasi melalui rantai transpor elektron dan menghasilkan generasi tambahan ATP oleh ATP sintase.. The piruvat yang dihasilkan sebagai produk akhir dari glikolisis adalah untuk substrat Siklus Krebs. Dalam mitokondria, piruvat dioksidasi oleh piruvat dehidrogenase kompleks untuk asetil KoA, yang sepenuhnya teroksidasi menjadi karbon dioksida oleh siklus asam sitrat (juga dikenal sebagai Krebs Cycle . Setiap “giliran” dari siklus asam sitrat menghasilkan dua molekul karbon dioksida, satu molekul ATP setara guanosin trifosfat (GTP) melalui tingkat substrat fosforilasi dikatalisis oleh KoA suksinil sintetase, tiga molekul berkurangnya koenzim NADH, dan satu molekul koenzim pengurangan FADH 2. . Kedua molekul terakhir ini didaur ulang untuk mereka negara teroksidasi (NAD + dan FAD, masing-masing) melalui rantai transpor elektron, yang menghasilkan ATP tambahan oleh fosforilasi oksidatif.. Oksidasi dari molekul NADH hasil dalam sintesis 2-3 molekul ATP, dan oksidasi satu FADH 2 menghasilkan antara 1-2 molekul ATP. [19] Sebagian besar ATP sel dihasilkan oleh proses ini.. Meskipun siklus asam sitrat itu sendiri tidak melibatkan molekul oksigen, ia adalah sebuah obligately aerobik proses karena O 2 yang diperlukan untuk mendaur ulang dikurangi NADH dan FADH 2 teroksidasi negara mereka.. [ 20 ] Dalam ketiadaan oksigen siklus asam sitrat akan berhenti berfungsi karena kurangnya tersedia NAD + dan FAD. [20]
Generasi ATP oleh mitokondria dari NADH cytosolic bergantung pada-aspartat malat shuttle (dan sampai batas tertentu, yang gliserol-fosfat antar-jemput) karena bagian dalam membran mitokondria impermeabel terhadap NADH dan NAD. Daripada yang dihasilkan NADH mentransfer, sebuah malat dehidrogenase enzim mengkonversi oksaloasetat untuk malat, yang translokasi ke matriks mitokondria. Malat dehidrogenase lain-reaksi dikatalisis terjadi dalam arah yang berlawanan, menghasilkan oksaloasetat dan NADH dari baru diangkut malat dan toko interior mitokondria NAD. [ 20 ] Sebuah transaminase mengubah oksaloasetat untuk aspartat untuk transportasi kembali melintasi membran dan ke rohangan antarmémbran.
. Hal ini menciptakan sebuah kekuatan pendorong proton yang merupakan efek bersih dari pH gradien dan potensial listrik gradien melintasi membran dalam mitokondria. Aliran proton bawah gradien potensial ini – yaitu, dari rohangan antarmémbran ke matriks – memberikan kekuatan pendorong untuk sintesis ATP oleh ATP sintase. [ 23 ] Ini enzim berisi subunit rotor yang berputar secara fisik relatif terhadap bagian statis dari protein selama sintesis ATP.
Sebagian besar ATP disintesis dalam mitokondria akan digunakan untuk proses-proses seluler di sitosol; sehingga harus diekspor dari situs sintesis dalam matriks mitokondria. Membran berisi antiporter, yang ADP / ATP translokase, yang merupakan bagian integral membran protein yang digunakan untuk pertukaran baru-ATP disintesis dalam matriks untuk ADP di rohangan antarmémbran. [24] translokase ini didorong oleh potensial membran, seperti hasil dalam pergerakan sekitar 4 tuduhan negatif keluar dari membran mitokondria dalam pertukaran selama 3 bergerak dalam biaya negatif. Namun, juga diperlukan untuk mengangkut fosfat ke dalam mitokondria; pembawa fosfat bergerak proton dengan setiap fosfat, sebagian menghamburkan gradien proton..
 Asam lemak juga dapat dipecah menjadi asetil-KoA oleh beta-oksidasi.. Setiap putaran siklus ini mengurangi panjang rantai asil oleh dua atom karbon dan menghasilkan satu NADH dan satu molekul FADH 2, yang digunakan untuk menghasilkan ATP oleh fosforilasi oksidatif.. Karena NADH dan FADH 2 adalah molekul yang kaya energi, puluhan molekul ATP dapat dihasilkan oleh beta-oksidasi satu rantai asil panjang.. [ 25 ] Menghasilkan energi yang tinggi dari proses ini dan penyimpanan lemak kompak menjelaskan mengapa ini adalah yang paling sumber makanan padat kalori. [25] most eukaryotes, glucose is used as both.
 Respirasi anaerobik atau fermentasi memerlukan generasi energi melalui proses oksidasi dengan tidak adanya O 2 sebagai penerima elektron. Pada kebanyakan eukariota, glukosa digunakan sebagai energi baik toko dan donor elektron.

E.     Penyediaan Enzim
Tanpa adanya enzim, kehidupan yang kita kenal tidak mungkin ada. Sebagai biokatalisator yang mengatur semua kecepatan semua proses fisiologis, enzim memegang peranan utama dalam kesehatan dan penyakit. .Meskipun dalam keadaan sehat semua proses fisiologis akan berlangsung dengan cara yang tersusun serta teratur sementara homeostasis akan dipertahankan, namun keadaan homeostasis dapat mengalami gangguan yang berat dalam keadaan patologis.

Enzim adalah protein yang berfungsi sebagai katalisator untuk reaksi-reaksi kimia didalam sistem biologi. Katalisator mempercepat reaksi kimia. Walaupun katalisator ikut serta dalam reaksi, ia kembali ke keadaan semula bila reeaksi telah selesai. Enzim adalah katalisator protein untuk reaksi-reaksi kimia pasa sistem biologi. sebagian besar reaksi tersebut tidak dikatalis oleh enzim.
Berbeda dengan katalisator nonprotein (H+, OH-, atau ion-ion logam), tiap-tiap enzim mengkatalisis sejumlah kecil reaksi, kerapkali hanya satu. Jadi enzim adalah katalisator yang reaksi-spesifik karena semua reaksi biokimia perlu dikatalis oleh enzim, harus terdapat banyak jenis enzim. Sebenarnya untuk hampir setiap senyawa organik, terdapat satu enzim pada beberapa organisme hidup yang mampu bereaksi dengan dan mengkatalisis beberapa perubahan kimia.
Walaupun aktivitas katalik enzim dahulu diduga hanya diperlihatkan oleh sel-sel yang utuh (karena itu istilah en-zyme, yaitu, “dalam ragi”), sebagian besar enzim dapat diekstraksi dari sel tanpa kehilangan aktivitas biologik (katalik)nya. Oleh karena itu, enzim dapt diselidiki diluar sel hidup. Ekstrak yang mengandung enzim dipakai pada penyelidikan reaksi-reaksi metabolik dan pengaturanya, struktur dan mekanisme kerja enzim dan malahan sebagai katalisator dalam industri pada sintetis senyawa-senyawa yang biologis aktif seperti hormon dan obat-obatan. Karena kadar enzim serum manusia pada keadaan patologik tertentu dapat mengalami perubahan yang nyata, pemerikasaan kadar enzim serum merupakan suatu alay diagnostik yang penting bagi dokter.
Reaksi-reaksi seperti hidrolisa dan oxidasi berlangsung sangat cepat didalam sel-sel hidup pada pH kira-kira netral dan pada suhu tubuh. Ini dapat terjadi karena adanya enzim. Enzim disintesa di dalam sel, tetapi setelah diextraksi diluar sel masih mempunyai aktivitas.
Enzim bekerja sangat sfesifik. Suatu enzim hanya dapat mengatalisa beberapa reaksi, malahan seringkali hanya satu reaksi saja. Ini merupakan salah satu sifat penting enzim.
Ada segolongan enzim yang dapat mengatalisa jenis reaksi yang sama, misalnya memindahkan fosfat, oxidasi-reduksi, dan sebagainya. Oleh karena itu ada suatu kespesifikan (specificity)

| Free Bussines? |

Tidak ada komentar:

Posting Komentar